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Abstract

Genome scans are widely used to identify ‘outliers’ in genomic data: loci with different patterns compared with the

rest of the genome due to the action of selection or other nonadaptive forces of evolution. These genomic data sets

are often high dimensional, with complex correlation structures among variables, making it a challenge to identify

outliers in a robust way. The Mahalanobis distance has been widely used, but has the major limitation of assuming

that data follow a simple parametric distribution. Here, we develop three new metrics that can be used to identify

outliers in multivariate space, while making no strong assumptions about the distribution of the data. These metrics

are implemented in the R package MINOTAUR, which also includes an interactive web-based application for visualiz-

ing outliers in high-dimensional data sets. We illustrate how these metrics can be used to identify outliers from sim-

ulated genetic data and discuss some of the limitations they may face in application.
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Introduction

Knowledge of the genetic architecture of biological

traits—the number of loci that affect a phenotype, the

magnitude of their effect and their distribution across the

genome—not only illuminates the evolutionary processes

that shape genomes, but also has important implications

for complex diseases (Mccarthy & Hirschhorn 2008), con-

servation (Kohn et al. 2006; Allendorf et al. 2010; Funk

et al. 2012) and breeding programmes (Goddard & Hayes

2009; Varshney et al. 2009). With the advent of next-gen-

eration sequencing, we now have the ability to examine

genomes at a fine scale, and, as a result, we have identi-

fied a large number of genomic variants that are impli-

cated in complex diseases (Carlson et al. 2004; Hindorff

et al. 2009) and adaptation to the local environment

(Savolainen et al. 2013). This wealth of data is likely to

yield new insights, but it also brings with it the challenge

of extracting the relevant signal from noisy, complex,

multidimensional data sets. This is perhaps one reason

why most of the variants detected so far have only man-

aged to explain a very small proportion of the observable

phenotypic variation (Yang et al. 2010; Brachi et al. 2011).

The preferred method for detecting genomic variants

is via genome scans. There are many different

approaches towards scanning genomes, but all are based

on the same premise: that the loci of interest to the inves-

tigator are likely to be statistical outliers when compared

with the rest of the genome. The particular choice of

statistic will depend on the question being asked and the

experimental design and may include one or more statis-

tics from the following categories: tests for genetic differ-

entiation (Lotterhos & Whitlock 2014; Hoban et al.

in press), scans for strong positive selection and/or selec-

tive sweeps (Hohenlohe et al. 2010; Vatsiou et al. 2016),

genomewide association studies for phenotype-asso-

ciated loci (GWAS, reviewed in Carlson et al. 2004 and

Mccarthy et al. 2008), linkage mapping for quantitative

trait loci (QTL, Savolainen et al. 2013), genetic–
environment associations (reviewed in Rellstab et al.

2015) and scans for differentially expressed genes (Wang

et al. 2009). A number of different genome scan test
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statistics may be calculated for a single genomic data set,

and these are usually examined one at a time (i.e. in uni-

variate analyses). Some test statistics may be highly cor-

related, while the power of other test statistics may vary

for different regions of the genome depending on the

details of selection, recombination, mutation and migra-

tion rates (Tiffin & Ross-Ibarra 2014). Additionally, the

power of different approaches may vary among species

because of demographic history, and within a species

because of sampling design (De Mita et al. 2013; De Ville-

mereuil et al. 2014; Lotterhos & Whitlock 2015). Finally,

loci with intermediate probabilities of detection will

often exhibit the highest variance in results from genome

scans.

Given the complex evolutionary histories of most spe-

cies, it is doubtful whether any single statistic can fully

capture the genomic signal of interest in the majority of

cases (Verity & Nichols 2014). Furthermore, the uncer-

tainty in demographic history, coupled with the varia-

tion in statistical outcomes in different scenarios, makes

it difficult to know which statistics have the greatest

power to detect selection and which have the highest

false-positive rates. These issues point to a need for com-

posite, multivariate outlier methods that integrate infor-

mation across multiple test statistics.

Multivariate methods have been utilized extensively

in many biological applications, although in application

to genome scans, the power of the multivariate approach

for detecting outliers has not yet been fully evaluated.

Because some dimension reduction methods such as

principal component analysis rely on assumptions about

the data that may be unjustifiable in the context of gen-

ome scans (O’Reilly et al. 2012), these methods are not

ideally designed for the identification of multivariate

outliers (Patterson et al. 2006). Some GWAS analyses

have successfully employed multivariate approaches to

identify genetic associations with multiple phenotypes

(O’Reilly et al. 2012; Galesloot et al. 2014). Additionally,

multivariate approaches have also been used in GWAS

meta-analysis to simultaneously consider multiple

genetic or phenotypic variables (reviewed in Evangelou

& Ioannidis 2013). It is evident, however, that more

opportunities exist for the use of multivariate approaches

in outlier detection than are currently being capitalized

on.

While there are dedicated software tools for calculat-

ing a variety of test statistics, there does not currently

exist a unified platform for the filtering, visualization

and integration of test statistics in multivariate space.

Here, we describe a new R package called MINOTAUR

(Multivariate vIsualisatioN and OuTlier Analysis Using

R) built specifically for this purpose. This software pack-

age—initiated during a hackathon for population genet-

ics in R (https://github.com/NESCent/r-popgen-

hackathon)—provides functions for detecting outliers in

multivariate space alongside procedures to manipulate,

summarize and visualize these data. The R software

environment (R Core Team 2015) is free, open source

and hosts a large collection of tools for statistical analy-

sis, making it the ideal host for the development and

uptake of such a platform. Furthermore, because data

visualization is an important part of verifying and identi-

fying outliers, the R Shiny and Shiny Dashboard environ-

ments (Chang 2015; Chang et al. 2016) have been

employed to provide MINOTAUR users with an interactive

interface that streamlines the process of data input, sta-

tistical analysis and graphical exploration. Together,

these tools have the potential to increase the efficiency

with which the results of genome scans are interrogated.

Approaches to identifying multivariate outliers

In the MINOTAUR package, we implement four composite

measures that can be used to integrate information over

multiple univariate statistics: the Mahalanobis distance,

harmonic mean distance, nearest neighbour distance and

kernel density deviance. We developed the latter three

measures, which are related to Mahalanobis distance,

but make no strong assumptions about the parametric

form of the data, meaning they can be applied to multi-

variate statistics that have complex correlated or even

multimodal distributions. Some of these measures are

heavily influenced by the distance of points from the

multivariate centroid (Mahalanobis and harmonic mean

distance), while others are mainly influenced by the

sparseness of points in the local vicinity (nearest neigh-

bour distance and kernel density deviance), and so we

would expect the measures to behave differently from

one another and to vary in their behaviour depending on

the data at hand.

The calculation of these composite measures has been

optimized for genome-scale data using precompiled rou-

tines, written in C++ and integrated into R using the

package RCPP (Eddelbuettel & Franc�ois 2011; Eddelbuet-

tel 2013). Several packages devoted to multivariate statis-

tics that may be appropriate for genome-scale data

already exist in R (see Table S1, Supporting information),

and thus, users are free to utilize both existing statistical

methods and the more targeted functions included

within the MINOTAUR package.

Mahalanobis distance

The Mahalanobis distance is a multidimensional measure

of the number of standard deviations that a point lies

from the mean of a distribution. The Mahalanobis

distance of a d-dimensional observation xi = (xi1, xi2,

. . ., xid)
T from a distribution of N variables with mean
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�x ¼ ð�x1; �x2; . . .; �xdÞT and covariance matrix S is defined as

follows (Mahalanobis 1936):

DMðxiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � �xÞTS�1ðxi � �xÞ

q
ðeqn 1Þ

This distance differs from the ordinary Euclidean

distance due to the correction for covariance among

observations, making it a better distance measure for

genome scan summary statistics because it does not

assume that statistics are independent (i.e. Euclidean

distance equals Mahalanobis distance when S is a

diagonal matrix). However, this distance does make

the assumption that points disperse smoothly from a

single multivariate centroid, and so it will tend to per-

form poorly when observations have a complex or

multimodal distribution.

Harmonic mean distance

In this context, the ‘harmonic mean distance’ of an

observation xi refers to the harmonic mean of the dis-

tances between this point and all other points. The

distance measure used here is the Euclidian distance

normalized by multiplying by the inverse covariance

matrix. This ensures that results are not dominated

by a few statistics with a large spread and also

accounts for any potential correlation between statis-

tics, analogously to the Mahalonobis distance. Mathe-

matically, we can define the harmonic mean distance

as follows:

DHðxiÞ ¼ N
X
j6¼i

ðxi � xjÞS�1ðxi � xjÞ
� ��1=2

2
4

3
5
�1

ðeqn 2Þ

The harmonic mean is heavily influenced by small

values, which in this context means local effects are

amplified. However, more distant points also have some

effect on the final value (unlike the nearest neighbour

distance described below), and so the harmonic mean

strikes a balance between local and global effects. This

has some advantages in outlier detection, as observations

that are both distant from the main mass of the data and

have few neighbours in the local vicinity will tend to be

outliers.

Nearest neighbour distance

The nearest neighbour distance of the observation xi
gives the minimum distance between this point and

any other point. As with the harmonic mean distance,

we use the Euclidian distance normalized by the

inverse covariance matrix. Mathematically, we can

write

DNðxiÞ ¼ minj6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞS�1ðxi � xjÞ

q� �
ðeqn 3Þ

This statistic exclusively measures local effects, being lar-

gest when an observation is a long way from any other

point. Because this distance is only based on two points

(the focal point and its nearest neighbour), it is not influ-

enced by the global distribution of the data, unlike the

harmonic mean distance.

Kernel density deviance

Kernel density-based methods attempt to capture mathe-

matically the distribution of the data as the sum of a

number of simple parametric distributions. Here, we

apply these methods to identifying multivariate outliers,

defined as those points with a low density of data

around them in multivariate space. We assume a multi-

variate normal kernel G(xi|xj, k
2S) centred at the point xj,

where k is the bandwidth of the kernel, which is scaled

in each dimension by the covariance matrix of the data.

We then calculate the leave-one-out log-likelihood

(Leiva-Murillo & Art�es-Rodr�ıguez 2012) of the point xi as

follows:

LðxijkÞ ¼ log
1

N � 1

X
j6¼i

Gðxijxj; k2SÞ
0
@

1
A ðeqn 4Þ

In other words, this is equal to the log-probability

density of the point xi under the kernel density distribu-

tion constructed from all points apart from xi. Our final

density-based measure is defined as follows:

DKðxiÞ ¼ �2LðxijkÞ; ðeqn 5Þ

which is sometimes referred to as the Bayesian deviance.

This will be large whenever the density of the point xi is

low, and so the kernel density deviance can be thought

of as a measure of the sparseness of points around the

focal point.

One challenge when using kernel density methods is

choosing an appropriate value for the bandwidth. Here,

we simply use the bandwidth for which the total

deviance of all points is minimized, that is

k� ¼ argmink
XN
i¼1

�2L xijkð Þ
 !

ðeqn 6Þ

It can be shown that this is equivalent to the maxi-

mum-likelihood value of k under the leave-one-out

criterion. The value k* can be found using the MINOTAUR

function kernelDeviance(), which takes a vector of

bandwidths as input and returns the total deviance of
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each. This function can be used to search for the mini-

mum value of k manually, or via an optimization routine

such as optim(). Users are also free to use any other

bandwidth, entered manually, or in the absence of a

user-defined bandwidth, a simple method based on Sil-

verman’s rule is implemented as a default (this assumes

that data are normally distributed and are a simple func-

tion of the standard deviation of the samples (Silverman

1986)).

The MINOTAUR R package—an R Shiny graphical
user interface for multivariate outlier analysis
and visualization

The MINOTAUR package performs two main functions:

(i) it calculates the compound multivariate outlier

statistics described above and (ii) it enables users to

harness the interactive graphical power of the R

Shiny environment to manipulate and visualize their

data within the MINOTAUR graphical user interface

(GUI). The GUI allows users to perform the former

task with the click of a button; however, outlier iden-

tification can also be performed on the R command

line using stand-alone functions available in MINOTAUR,

if preferred. Directions for downloading and installing

the package can be found at the end of this

manuscript.

The MINOTAUR GUI is designed to streamline the pro-

cess of genomic data analysis and outlier identification,

taking users from data input to graphical output within

a single platform. Distinct panels are used for each stage

of the analysis, including data input and filtering, outlier

detection via the methods described above and plotting

results (e.g. histograms, scatter plots and Manhattan

plots). An overview of the MINOTAUR GUI workflow is

show in Fig. 1.

In the Data panel, the MINOTAUR GUI allows users to

either upload their own data sets or select among a set of

four in-built example data sets. Data can be uploaded in

a number of file formats, including comma- or tab-sepa-

rated text files, and Rdata. Regardless of the file format,

MINOTAUR expects all incoming data sets to be arranged in

data frames, with each row representing a different

genetic locus and each column representing a different

univariate genome scan statistic (e.g. FST, Tajima’s D) or

other piece of locus-specific metadata (e.g. SNP identi-

fiers, chromosomes/scaffolds and positions). Raw data

objects can be filtered within the GUI, meaning, for

example, that columns not related to outlier analysis can

be dropped at an early stage.

Four example data sets are made available to users

within the MINOTAUR package and GUI. The ‘HumanG-

WAS’ data set contains example output from an

unpublished human genomewide association study.

The simulated ‘NonParametricInverse’ and ‘NonPara-

metricMultimodal’ data sets each contain an example

of nonparametric data, one with an inverse relation-

ship and one that is highly multimodal. The ‘TwoRef-

Sim’ data set contains population genetic data

simulated under a model of expansion from two refu-

gia (Lotterhos & Whitlock 2015). Note that the exam-

ple data sets can also be accessed outside the GUI by

running the data() command with the appropriate

data set name. For example, to load the ‘HumanG-

WAS’ data set, type data(HumanGWAS) and hit

ENTER. To learn more about a data set while in the

R terminal, add a question mark before the data set

name to load the relevant Help page; for example,

type ?HumanGWAS and hit ENTER.

In the Multivariate Measures panel, multiple univariate

statistics can be integrated to produce the compound dis-

tance measures described above. These measures can be

appended to the data frame and visualized interactively

in the Produce Plots panel, which includes several sub-

menus with useful plots for visualizing high-dimen-

sional data sets, including Manhattan plots, 1D

histograms and density-based 2D scatter plots. The plot-

ting methods are designed with large genomic data sets

in mind; for example, the plot2d() function included

with the package calculates the density of points for a

given bin size and shades bins according to the density

of points within them and then optionally adds user-sup-

plied points (ideally a small subset of points, for example

the outliers only) to the plot. Additional options allow

users to log-scale statistics and control various other

visual settings commonly used when plotting data in R

(Fig. 2).

Example applications of multivariate outliers

Evaluation of computational speed

First, we evaluated the speed of calculating the four com-

pound distance measures for data sets with increasing

numbers of loci (rows) and univariate statistics (col-

umns). For this example, variables were randomly gener-

ated from a multivariate normal distribution. Table 1

gives the ‘order’ of complexity of these algorithms,

together with measured run times for a data set com-

posed of 50 000 loci and 10 variables (see Table S2, Sup-

porting information). Overall, the Mahalanobis distance

is calculated in a matter of seconds, even with particu-

larly large data sets. The harmonic mean distance, near-

est neighbour distance and kernel density deviance each

scale approximately equally with increasing data set

sizes, although the maximum-likelihood estimate of the

ideal bandwidth for the latter measure can add signifi-

cant computation time.
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Example on simulated nonparametric distributions

Some kinds of genomic data—for example gene expres-

sion data—may generate complex nonparametric distri-

butions. Genes that have high expression in one

environment may have low expression in another envi-

ronment, while investigators may be interested in identi-

fying genes that have moderate expression in both

environments. To test the performance of the multivari-

ate outlier statistics in nonparametric situations, we sim-

ulated two examples of nonparametric distributions.

In the first example, we simulated a distribution of

two variables that follow an inverse relationship, with

some additional noise. We used contour plots to visual-

ize the different ways in which each of the compound

distance measures changes over the two-dimensional

plane (Fig. 3). In these plots, the darker red lines indicate

less-significant values of the test statistic and lighter yel-

low lines indicate more-significant values of the test

statistic. We also looked at two manually chosen points

on the plane—indicated by a square and a triangle—

chosen to represent different sorts of outliers. The

triangle would not be considered an outlier from the per-

spective of either one-dimensional distribution despite

being a clear outlier from the two-dimensional

distribution, while the square would be considered an

outlier in the first dimension but not the second. In this

example, the nonparametric distribution affects the rela-

tive ability of the four statistics to identify each of these

outliers (Fig. 4). The blue triangle would not have the

largest value (i.e. not be the most outlying point) by the

Mahalanobis or the harmonic mean distance, while it

would have the largest value by nearest neighbour dis-

tance or kernel density deviance. In contrast, the blue

square has the largest value of the test statistic by all four

methods.

In the second example, we simulated a highly multi-

modal distribution from a normal mixture model. In this

example, it can be seen how the parametric assumption

of the Mahalanobis distance fails to capture the complex-

ity of the data (Fig. S1, Supporting information). In con-

trast to the previous example, the harmonic mean

distance behaves similarly to the kernel density

deviance, and nearest neighbour distance has the most

complex contour landscape.

Example on simulated genomic data

To test the power of multivariate statistics for genome

scans, we applied them to a published simulated data set

Fig. 1 Graphical overview of the MINO-

TAUR GUI workflow.
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that was used to test different genome scan methods

(Lotterhos & Whitlock 2014, 2015). Briefly, a landscape

simulator was used to simulate haploid neutral and

selected loci that adapted to an environmental cline (Lot-

terhos & Whitlock 2015). The landscape consisted of

360 9 360 demes, and the allele frequency of each deme

changed each generation according to recurrence equa-

tions for mutation, migration, selection (if applicable)

and drift (Lotterhos & Whitlock 2015). For the data set

used in this example, a total of 9900 neutral and 100

selected loci (simulated under varying strengths of selec-

tion: 12 loci with s = 0.1, 38 loci with s = 0.01 and 50 loci

with s = 0.005) were simulated under a two-refuge

demographic expansion. Individuals were then sampled

from the landscape according to the allele frequency in

each deme at 30 randomly chosen locations on the land-

scape at 20 individuals per location. For additional

details, see Lotterhos & Whitlock (2014, 2015).

Fig. 2 Screenshot of MINOTAUR GUI highlighting the overall interface and the ability to visualize multivariate distributions. The plot is a

Manhattan plot of the nearest neighbour distance across loci for all traits in the ‘HumanGWAS’ example data set provided as part of

MINOTAUR. The base scatter plot demonstrates the binned visualization, where the density of data in an area is apparent from the colour.

About 99.5 percentile outliers are indicated with solid orange circles. Visualization menus have been collapsed to simplify the image.

Additional plots can also be stacked below to enable comparisons across multiple plots (not shown).

Table 1 Multivariate outlier detection methods implemented in MINOTAUR and associated computational run times

Compound measure Description R Function

Computational

complexity

(big O notation)

Computation

Elapsed Time

for 50 000 loci

and 10 variables

(hh:mm:ss.ms)

Mahalanobis distance Distance from multivariate

centroid

Mahalanobis() O(Nk2) 00:00:00.095

Harmonic mean distance Inverse-weighted distance

from all other points

harmonicDist() O(Nk2) 00:04:13.620

Nearest neighbour distance Distance to nearest

neighbour

neighborDist() O(Nk2) 00:04:07.020

Kernel density deviance Local density of points kernelDist() O(Nk2) 01:40:03.600

Computational complexity is given in ‘big O’ notation, with N referring to the number of observations and k the number of statistics (di-

mensions). Run times were determined using an Apple iMac with a 3.1 GHz Intel Core i5 processor and 32 GB of RAM running Apple

OSX 10.9.5 and R version 3.2.3. Note that for computation time, the kernel density deviance includes both the maximum-likelihood esti-

mation of the optimal bandwidth and the density calculations based on the optimal bandwidth
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The simulated data were used to create a single

nucleotide polymorphism (SNP) table, and these data

were used to perform genome scans in the programs

BAYENV2 (G€unther and Coop 2013) and LFMM (Frichot

et al. 2013; now implemented in the R package LEA: Fri-

chot & Franc�ois 2015). A total of four univariate statistics

from these two programs were used in the search for

multivariate outliers: (i) log-Bayes factor (log-BF, a mea-

sure of the association between allele frequency and the

environment in BAYENV2), (ii) Spearman’s rho (a measure

of the association between allele frequency and the

environment in BAYENV2), (iii) XTX (a measure of genetic

differentiation among populations in BAYENV2) and (iv)

Z-score (a measure of the association between genotype

and the environment in LFMM). These four univariate

statistics, plotted in Fig. 4, were previously shown to

have different strengths and weaknesses depending on

sampling design and demographic history (Lotterhos &

Whitlock 2015).

To illustrate the flexibility of the outlier functions

implemented in MINOTAUR, we calculated multivariate

outliers in two ways, corresponding to two different

ways of calculating the covariance matrix S in equa-

tions (1) to (4). First, we used the traditional method of

calculating the covariance matrix based on all the data.

For high-dimensional data, estimation of the multivariate

mean and covariance (location and scatter) is expected to

be robust to outliers as long as the proportion of outliers

in the data is less than 1/(k + 1), where k is the number

variables in the data frame (Rousseeuw & Van Driessen

1999). However, we found that even in this small data

frame of only four variables and 10 000 loci, the 1% of

selected loci (a fraction of which were true outliers)

affected the estimation of the covariance matrix. For this

reason, our MINOTAUR functions are designed to allow the

user to input their own covariance matrix. To illustrate

this use of the function, we also calculated a robust mul-

tivariate location and scatter estimate with a high break-

down point, using the ‘Fast MCD’ (minimum covariance

determinant) estimator with the function CovNAMcd in

the R package rrcovNA (Rousseeuw & Van Driessen

1999; Todorov et al. 2011).

To compare the ability of the univariate statistics and

the multivariate statistics to separate neutral from

selected loci, we calculated the empirical power. The

empirical power is based on using all known neutral loci

to generate a null distribution, and then, for each locus,

an empirical P-value is calculated based on its cumula-

tive frequency in this null distribution. To control for

false discovery rate, empirical p-values were converted

to q-values (in the R package qvalue:Dabney & Storey

2014) and loci with a q-value less than 0.05 were retained
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Fig. 3 Comparison of multivariate dis-

tance measures for nonparametric exam-

ple data. Black dots show the simulated

data, in which the two statistics (dimen-

sions) are assumed to follow an inverse

relationship with some additional noise.

Solid lines show the distance measure

computed at each point in the plane,

arranged in 10% quantiles (e.g. the inner

ring shows the 10% of locations with the

smallest distance). The blue square and

triangle show particular outlier points

referred to in the main text.
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as positive hits (a q-value of 0.05 has a desired rate of five

false positives of 100 positive hits).

For the univariate statistics, the empirical power was

highest for log-BF (0.54) and lowest for Z-score (0.15),

with Spearman’s rho (0.46) and XTX (0.42) intermediate.

For the multivariate statistics with the default covariance

estimation, the empirical power was high for harmonic

mean distance and Mahalanobis distance (0.41 for both),

with kernel density and nearest neighbour distance per-

forming poorly in this case (0.09 for both) (Fig. S2, Sup-

porting information). For the user-input covariance

matrix estimated with a high breakdown point (i.e. less

influenced by outliers), the empirical power was highest

for harmonic mean distance and Mahalanobis distance

(0.58 for both), with kernel density and nearest neigh-

bour distance still performing poorly (Fig. 5). This final

example illustrates the potential of Mahalanobis and har-

monic mean distance to improve the signal-to-noise ratio

in genome scans, because the empirical power in this

case was higher than any univariate statistic alone.

Discussion

Although the number of packages for population genetic

data analysis in the R software is rapidly increasing

(http://popgen.nescent.org/PACKAGES.html), basic

tools for manipulating and visualizing genome-scale

data sets have so far been lacking. MINOTAUR fills this gap

using the R Shiny Dashboard package to implement a

GUI that makes it easy to upload, manipulate, analyse

and visualize genomic data.

The multivariate metrics calculated in MINOTAUR con-

tribute to a growing number of multivariate tools imple-

mented in the R environment (see Table S1, Supporting

information). Methods that are influenced heavily by

the distance of a point from the centroid in multivariate

space (such as Mahalanobis and the harmonic mean dis-

tance) will perform differently compared with methods

that are influenced mainly by the sparseness of points in

multivariate space (such as nearest neighbour distance

and kernel density), as illustrated in the examples here.

However, depending on how the data are distributed,

the harmonic mean distance may be influenced by both

these factors. For a single simulated data set, we found

that robust use of the Mahalanobis or harmonic mean

distance (i.e. when the covariance matrix used was esti-

mated with a high breakdown point) could have higher

power than any single univariate statistic alone.

Although nearest neighbour distance and kernel density

deviance performed poorly on the simulated genomic

data, they may be useful in application to other kinds of

nonparametric data, as illustrated in our examples

Fig. 4 Distributions of four univariate

statistics from the two-refuge data set

from Lotterhos & Whitlock (2015).
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(Figs 3 and S1, Supporting information). Further evalua-

tion, however, will be needed on both simulated and

empirical data to determine whether multivariate outlier

approaches will improve the signal-to-noise ratio in gen-

ome scans.

The MINOTAUR package is designed to complement

existing tools for the analysis and integration of genome

scan data. Thus, in addition to providing its own tools

for genome-scale analyses, MINOTAUR can serve as a plat-

form for the further analysis and visualization of results

generated by other R packages. Examples include results

from differential gene expression (LIMMA: Ritchie et al.

2015; DESEQ: Anders & Huber 2010; SEQGSEA: Wang &

Cairns 2014), outliers for genetic differentiation (OUT-

FLANK: Whitlock & Lotterhos 2015; PCADAPT: Luu &

Blum 2015), genetic–environment associations (LEA: Fri-

chot & Franc�ois 2015) or genomewide association studies

(e.g. GENABEL: Aulchenko et al. 2007; BLUESNP: Huang

et al. 2013).

Recent developments such as the R Shiny and Shiny

Dashboard environments (Chang 2015; Chang et al.

2016) dramatically aid in the development of R-based

user-friendly web interfaces. Taking advantage of these

tools, MINOTAUR is able to offer a new platform for visual-

izing and integrating genomic data that may appeal to

molecular ecologists, modellers, statisticians and public

health agencies.

Resources

Availability: Upon acceptance for publication, MINOTAUR

will be distributed on CRAN (http://cran.r-project.org/)

and be available for R on Windows, MAC OSX and LINUX

platforms. Currently, MINOTAUR can be accessed via the

following steps:

• install.packages(“devtools”, dependencies

=TRUE)

• library(devtools)

• install_github(“NESCent/MINOTAUR”, build_

vignettes=TRUE)

• library(MINOTAUR)

• MINOTAUR()

Note to reviewers: If you are facing issues with instal-

lation, try updating to the newest version of R and rein-

stalling devtools from source. MINOTAUR has been tested

on R version 3.3.0.

Licence: GNU General Public Licence (GPL) ≥2.
Documentation: Besides the usual package documen-

tation, MINOTAUR is released with a tutorial which can be

opened by typing VIGNETTE(“MINOTAUR”).

Development: The development of MINOTAUR is

hosted on GITHUB: (https://github.com/NESCent/MIN-

OTAUR).
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Fig. 5 Distributions of the four multivari-

ate compound statistics applied to the

four univariate statistics shown in Fig. 2.

The MCD calculation of the covariance

matrix was used. All 9900 neutral loci are

plotted on indexes 0–100, and the selected

loci are plotted on indexes 100–200. Note

log transformation of each variable on the

y-axis for (A) Mahalanobis distance, (B)

harmonic mean distance, (C) kernel den-

sity and (D) nearest neighbour distance.

The empirical power of the statistic to dis-

criminate neutral from selected loci (see

main text for details) is shown in the

upper left-hand corner.
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Supporting Information

Additional Supporting Information may be found in the online

version of this article:

Table S1 Table of multivariate outlier statistics in other R pack-

ages that could be used in the context of genomic scans.

Table S2 Computation times for the four multivariate outlier

detection methods in MINOTAUR for datasets up to 100 000 loci

(rows) and 20 variables (columns) in hh:mm:ss.ms format. Run

times were determined using an Apple iMac with a 3.1 GHz

Intel Core i5 processor and 32 GB of RAM running Apple OSX

10.9.5 and R version 3.2.3. Note that the kernel density deviance

includes both the maximum likelihood estimation of the optimal

bandwidth and the density calculations based on the optimal

bandwidth.

Fig. S1 Comparison of multivariate distance measures for multi-

modal example data.

Fig. S2 Analogue to Fig. 5 in the main paper, but with a default

estimate of covariance using all the data.
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